
Automatic Thread-Level Parallelization in the Chombo

AMR Library

Matthias Christen2, Noel Keen1, Terry J. Ligocki1,
Leonid Oliker1, John Shalf1, Brian Van Straalen1, Samuel W. Williams1

1Computational Research Division (CRD)
Lawrence Berkeley National Laboratory

Berkeley, CA 94720

2University of Basel, Switzerland

August 16, 2011

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While
this document is believed to contain correct information, neither the United States Government nor
any agency thereof, nor The Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof, or The Regents of the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof
or The Regents of the University of California.

Abstract

The increasing on-chip parallelism has some substantial implications for HPC applications. Currently,
hybrid programming models (typically MPI+OpenMP) are employed for mapping software to the
hardware in order to leverage the hardware’s architectural features. In this paper, we present an
approach that automatically introduces thread level parallelism into Chombo, a parallel adaptive mesh
refinement framework for finite difference type PDE solvers. In Chombo, core algorithms are specified
in the ChomboFortran, a macro language extension to F77 that is part of the Chombo framework.
This domain-specific language forms an already used target language for an automatic migration of
the large number of existing algorithms into a hybrid MPI+OpenMP implementation. It also provides
access to the auto-tuning methodology that enables tuning certain aspects of an algorithm to hardware
characteristics. Performance measurements are presented for a few of the most relevant kernels with
respect to a specific application benchmark using this technique as well as benchmark results for
the entire application. The kernel benchmarks show that, using auto-tuning, up to a factor of 11 in
performance was gained with 4 threads with respect to the serial reference implementation.

1 Introduction and Motivation

As supercomputers move into the Petascale and Exascale regime, application codes are needing to ex-
ploit several levels of explicit parallelism to make use of these highly concurrent architectures. Chombo
is a highly successful MPI-based parallel PDE simulation package. This work describes one part of the
effort to create a hybrid parallel Chombo package that uses MPI for the high level existing parallelism,
and OpenMP for the fine-grained loop-level parallelism existing in the code already. These low-level
multidimensional loops are spread across hundreds of lines of existing legacy F77 code. Fortunately,
the code is written in a special form of F77 called ChomboFortran, a domain-specific language used
by the Chombo development team to write portable, maintainable, dimension-independent Fortran
code and to automate the process of linking the main C++ library to the F77 kernels. This project
is an attempt to explore using this already existing language as a target for writing fine-grained loop
parallel code automatically, and provide sufficient context for sophisticated compute kernel extraction
and auto-tuning optimization work.

Experiments using a Godunov gas dynamics simulation and an ice sheet modeling calculations
demonstrate that our methodology can be integrated into advanced numerical methods with mini-
mum effort. Results on large-scale Opteron- and Nehalem-based supercomputers show that significant
performance achievements can be attained using our hybrid and auto-tuned blocking schemes, if suf-
ficient computational intensity as available in the underlying kernel. Overall, our approach highlights
the potential of automating improved parallel performance, reducing memory requirements, and en-
hancing load balancing efficiency for an important class of Chombo-based adaptive mesh refinement
calculations.

1.1 Chombo

Block-structured adaptive mesh refinement (AMR), developed by Berger and Oliger [2, 3, 6] for com-
putational gas dynamics, is a multiscale algorithm that achieves high spatial and temporal resolution
in localized regions of dynamic multidimensional numerical simulations. A broad range of physical
phenomena modelled by PDEs exhibit multiscale behavior where variations in the solution occur over
scales that are much smaller than the overall problem domain. Examples include flame fronts arising
in the burning of hydrocarbon fuels, nuclear burning in supernovae, effects of localized features in
orography or bathymetry on ocean currents, tracking tropical cyclones, localized kinetic effects for
plasma physics problems, and, in general, small scale effects due to nonlinear instabilities. In each of
these problems, the fundamental mathematical description is given in terms of various combinations
of PDEs of classical type (elliptic, parabolic, hyperbolic).

1.2 Related Work

As Chombo is a package based on finite difference type PDE solvers, many of the F77 kernels do stencil
computations on structured grids. Within this domain, specialized frameworks were proposed [5, 9].
The stencil algorithms are specified in high-level languages, which compile to low-level counterparts
to which hardware-dependent loop transformations are applied. Recent more generally applicable
approaches include SEJITS [4] and PetaBricks [1]. SEJITS is an approach, which does a just-in-
time compilation of an algorithm or a part of an algorithm specified in a high productivity language
(such as a scripting language like Python) to an “efficiency-level” language, which maps more directly
to the underlying hardware. PetaBricks is a framework that tries to compose an algorithm from
sub-algorithms selected by an auto-tuner and thereby guaranteeing that the final implementation is
hardware-efficient and maps well to the selected hardware architecture.

1

2 Methodology

In a Chombo application, two programming languages are used: The general program logic is written
in C++ in order to be able to benefit from the rich data structures and from the programming
paradigms that C++ supports. Fortran is used for the performance-critical routines operating on a
well-defined subset of data, since the design of the Fortran language enables more rigorous compiler
optimizations and therefore it often offers superior floating-point performance.

These performance-critical routines are written in a Chombo-specific Fortran dialect (ChomboFortran):
ChomboFortran is a domain-specific language originally designed to provide a clean interface for the
programmer between the logic part of the framework written in C++ and the Fortran routines and,
more importantly, to enable a dimension-independent implementation of the routines. It is imple-
mented as a source-to-source translator (ChomboFortran to Fortran77) parsed by a set of simple Perl
scripts.

Mostly, the computationally intensive code is contained in multido macros, which are expanded
to loop nests sweeping over a box of the desired dimension. This makes the multido macros a perfect
target for automatic fine-grained loop-level parallelization as well as loop structure optimizations, e.g.,
cache blocking. If a kernel is found to benefit from blocking, auto-tuning is used to determine the
block sizes for which the kernel performs best on the given hardware architecture.

2.1 Automatic Loop-Level Threading

A typical ChomboFortran multido loop sweeps over a box doing a point-wise or a stencil (nearest
neighbor) computation on each of the array elements, Chombo being an adaptive mesh refinement
framework for finite difference codes. In most of the loops, the number of arithmetic operations on
an array element is limited (and, in fact, constant with respect to the problem size). Hence, the
performance is typically limited by the available memory bandwidth. For bandwidth-limited compute
kernels it is essential to minimize memory traffic. If the grid on which the computation is made does
not entirely fit into the cache, cache blocking is a means to increase data reuse and therefore reduce
memory traffic.

In the Chombo Fortran, a multido loop has the following syntax:

CHF_MULTIDO[box;i;j;k]

array(CHF_IX[i;j;k]) = ...

CHF_ENDDO

In this snippet, box defines the lower and upper bounds of the rectangular box over which is
iterated, and i, j, k are the loop indices that will be used in the generated loop nest. If the dimension
is lower than 3, the surplus index variables will be discarded. E.g., if the number of dimensions is 3,
the original Chombo Fortran processor translates this snipped to a simple triply nested loop,

do k = boxlo2 , boxhi2

do j = boxlo1 , boxhi1

do i = boxlo0 , boxhi0

array(i,j,k) = ...

enddo ...

The extended, auto-parallelizing version of the ChomboFortran processor can block the loop nest
and replace it by a D(B + 1)-fold nested loop, where D is the number of dimensions and B is the
number of blocking levels. The outermost level of blocks, or, if B = 0, the simply outermost loop is
used for parallelization. Each thread is assigned a number of consecutive largest blocks. If no blocking
is desired, the iterates of the outermost loop is dealt out to the available threads. We do not do any
more elaborate loop transformations at this point, such as loop unrolling or more advanced fashions of

2

tiling. Also, a compiler directive is inserted that gives a hint to the compiler to treat write operations
to arrays as streaming stores and thereby bypassing the cache when data is written back to main
memory.

OpenMP is used for parallelization. If the parallelizer is instructed not to do any blocking, an OMP

PARALLEL DO sentinel is created, in which the code resulting from expanding the CHF MULTIDO loop
macro is wrapped, and the default OpenMP thread scheduling is applied. In case of blocking, the
assignment of blocks to threads is done explicitly within the parallel region by issuing guards that let
the threads only execute the blocks to which they were assigned.

First, the parallelizer needs to check whether parallelization of the loop nest is possible. E.g., if
scalar variables are assigned that are outputs of the routine, that output value depends on the sequen-
tial order of the loop iterates, and it cannot be parallelized. Also, if a reduction is performed over
elements depending on the loop indices, this must be recognized and handled accordingly. Currently,
as the reduction loops encountered in the Chombo code do not appear in the critical routines, paral-
lelization is omitted. The parallelizer also needs to find temporary variables in the loop that need to
be privatized.

If the code is to be blocked (B > 0), both the block sizes and the number of consecutive blocks
assigned to one thread are not fixed at compile time. We introduce variables for the block sizes
and number of blocks (AUTO * in the code snippet below). These variables are added temporarily as
parameters to the routine. The basic idea is that the auto-tuner then measures the runtime of the
code for different parameter configurations, picks the configuration for which the code has the lowest
runtime, and substitutes the values back into the final code.

The snippet below shows an example of the result of automatic parallelization and blocking.

!$OMP PARALLEL FIRSTPRIVATE ({private variables}) PRIVATE ({loop indices})
do blk0k = boxlo2 , boxhi2 , AUTO_BLOCKSIZE_2

do blk0j = boxlo1 , boxhi1 , AUTO_BLOCKSIZE_1

do blk0i = boxlo0 , boxhi0 , AUTO_BLOCKSIZE_0

maxblk1k = min(boxhi2 , blk0k+AUTO_BLOCKSIZE_2 -1)

maxblk1j = min(boxhi1 , blk0j+AUTO_BLOCKSIZE_1 -1)

maxblk1i = min(boxhi0 , blk0i+AUTO_BLOCKSIZE_0 -1)

if ({thread control }) then

do k = blk0k , maxblk1k

do j = blk0j , maxblk1j

!DEC$ VECTOR NONTEMPORAL (array)

do i = blk0i , maxblk1i

array(i,j,k) = ...

end do

...

2.2 Kernel Extraction and Benchmark Harness Generation

The best choices for blocking parameters may vary from loop to loop. Therefore, we want to deter-
mine the optimal blocking parameters for each CHF MULTIDO loop individually, and we need a means
to extract individual loops along with their contexts. We call a subroutine containing exactly one
CHF MULTIDO a kernel. If there are multiple CHF MULTIDO loops in a subroutine, the kernel extractor
creates multiple kernels from that subroutine. While we want to preserve the calculations in the sub-
routine preceding the loop, we also want to ensure that the loop is actually executed. Therefore, if,
e.g., the loop is contained in an if statement, that if statement is omitted by the kernel extractor.

Along with the Fortran kernel code, a C++ source file is automatically generated that calls the
kernel subroutine with random input data, and thereby mimics the way the Fortran kernel is called
in Chombo, and benchmarks the kernel by means of measuring the number of clock cycles spent in
the kernel execution. All the subroutines parameters added by the parallelizer are exposed to the
command line of the microbenchmark.

3

(a) (b)

Figure 1: (a) Replicated grids at the finest AMR level used in the weak scaling performance study of
the Godunov benchmark, covering the shock front of a spherical explosion in 3D. (b) Snapshot from
BISICLES simulation showing ice displacement velocity, refined from 10km baseline resolution.

This automatically generated microbenchmark harness can be used for both benchmarking and
profiling an individual kernel and to build an executable used by the auto-tuner.

2.3 Auto-Tuning

The auto-tuning methodology has been successfully adopted in several well-known libraries and frame-
works including ATLAS [14], FFTW [7], OSKI [13], and SPIRAL [11]. Oftentimes, in codes that are
written to match a hardware architecture for best performance, parameters capture certain aspects of
the hardware. E.g., they can be related to cache sizes, and the performance depends highly and often
non-trivially on these parameters, so that choosing good values is essential, but hard to predict. The
auto-tuner methodology provides a means to select such parameters even if no performance model
exists.

The Chombo auto-tuner runs the microbenchmark executable repeatedly with varying parameter
configurations. For the results presented in this paper, we used two runs the Powell search method,
which iteratively determines the optimum along fixed parameter axes. The second run uses the
parameter configuration found in the first run as starting point.

3 Experimental Testbed

In this section we first discuss the target applications: the 3D Godunov Gas Dynamic simulation and
the 2D Ice Sheet Modeling calculation. We then summarize the key architectural components of the
evaluated platforms.
Hyperbolic Gas Dynamics Benchmark We benchmarked an explicit method for unsteady inviscid
gas dynamics in 3D that is based on an unsplit PPM algorithm [10,15]. This benchmark is described
in previous related work [12].

We have developed benchmarking methods based on replication scaling which take a grid hierarchy
and data for a fixed number of processors and scale the problem to higher concurrencies by making
identical copies of the hierarchy and the data (Fig. 1). The full AMR code (processor assignment,
problem setup, etc.) is run without any modifications so it does not take advantage of the replicated

4

grid structure. Replication scaling tests most aspects of weak scalability, is simple to define, and
provides results that are easy to interpret. Thus, it is a very useful tool for understanding and
correcting impediments to efficient scaling in an AMR context. Furthermore, it is a good proxy for
the scaling behavior of real applications. For example, a large part of the gas turbine calculation will
be the simulation of multiple identical burners arranged in a ring.
Ice Sheet Modeling The dynamics of ice sheets span a wide range of scales. Localized regions such
as grounding lines and ice streams require extremely fine (better than 1 km) resolution to correctly
capture the dynamics. Conversely, there are large regions where such fine resolution represents a waste
of resources, making ice sheets a prime candidate for adaptive mesh refinement, in which finer spatial
resolution is added where needed. The Berkeley ISICLES (BISICLES) [8] is studying the construction
of a high-performance scalable AMR ice sheet model using the Chombo parallel AMR framework. A
visualization of a BISICLES simulation showing ice displacement velocity is shown in Fig. 1.

In this paper, we examine the top 5 kernels by time in a BISICLES simulation. All five are 2D
kernels (depth averaged from the 2.5D discretization). Moreover, 4 are viscous tensor operators from
the elliptic solver while COMPUTEL1L2MU computes depth averaged viscosity.

3.1 Evaluated Platforms

In order to gauge the value of our threading and performance optimization techniques at scale, we
employed two large supercomputers located at NERSC — a Cray XT4 named Franklin, and a IBM
Infiniband cluster named Carver. By exploring both architectures, we gain insights into how changes
in per-thread and per-process memory capacity, memory bandwidth, and network performance affect
simulation capability, performance, and scalability.
Cray XT4 (Franklin) Franklin is a Cray XT4 supercomputer with over 9500 compute nodes each
containing one 2.3GHz quad-core Opteron processor and one SeaStar2 network chip. Collectively the
network chips form a low-latency, high-bandwidth 3D torus. Each Opteron processor instantiates four
superscalar cores, a shared 2MB L3 cache, and a dual-channel DDR2-800 memory controller capable of
delivering a theoretical DRAM bandwidth of 12.8GB/s. DRAM latency is hidden via hardware stream
prefetching, and DRAM capacity is limited to 8GB. Each core includes both a private 64KB L1 cache
and a private 512KB L2 cache. Each core is capable of executing one double-precision SIMD add and
one double-precision SIMD multiply per cycle for a theoretical peak performance of 9.2GFlop/s/core
(36.8 GFlop/s/processor).
Nehalem Infiniband Cluster (Carver) Carver is an IBM iDataPlex cluster with 400 SMP compute
nodes each containing two 2.66GHz quad-core Xeon X5550 (Nehalem) processors and a 4X QDR
InfiniBand card. The machine is built on a hybrid network topology with local fat trees inside a
global 2D mesh. The Nehalem architecture is similar to the Opteron processor found in Franklin.
However, the L1, L2, and L3 caches are 32KB, 256KB, and 8MB respectively. Moreover, each Nehalem
processor is connected to 12GB of DDR3-1333 DRAM. In practice, the typical memory bandwidth of
about 19GB/s is far less than the theoretical bandwidth of 32GB/s. Like the Opteron, a Nehalem core
can execute one double-precision SIMD add and one double-precision SIMD multiply per cycle for a
theoretical peak performance of 10.66GFlop/s/core (42.66 GFlop/s/processor). HyperThreading is
disabled on this machine. To obviate the complexity of NUMA management, in all of our experiments
a threaded MPI process never spans more than one processor. Overall, an MPI process on Carver
has 16% more compute, 50% more DRAM capacity, and almost double the DRAM bandwidth of a
process on Franklin.

5

4 Kernel Results

In this section, we present kernel-only performance results for five kernels from each of the applications
discussed in section 3 in which most of the compute time is spent during the simulations. The kernel
benchmarks were carried out on both the Nehalem (“Carver”; the sub-figures (a) and (c) in Fig.
2 and the Opteron (“Franklin”; sub-figures (b) and (d)) hardware platforms; in each case on one
compute node (more specifically: one NUMA domain) only, since for the kernel-only benchmarks we
are only interested in thread level parallelization results. Section 5 will concentrate on the hybrid
MPI+OpenMP full applications.

On Carver, we used the gcc 4.4.2 to compile the extracted kernel codes; on Franklin, we used both
the vendor compiler – the Cray compiler 7.2.7 – and gcc 4.5.1. In this section, we only show the results
obtained with the Cray compiler, since it proved to be more amenable to the blocking optimization.
We used the -O3 -ffast-math -msse2 code generation and optimization flags for the gcc, and -O3

-O fp3 for the Cray compiler.
The benchmarks were carried out as follows: after one warmup kernel run we did 5 runs, counting

the number of clock cycles spent in each individual run, from which the median timing was selected.
Before each run the cache was flushed.

The vertical axes of the charts presented in this section show relative speedup numbers of the
automatically parallelized versions of the kernels with respect to the original serial version. One
stacked bar shows the scalability from 1 to 4 threads (the number of threads per NUMA domain on
both architectures) in blue, as well as the effect auto-tuned blocking in green, using 4 threads and
block sizes determined by the auto-tuner. The horizontal major axis represents the kernels, the minor
axis the size of the grid on which the kernel was run.

The selected kernels have different flavors of computations and memory access patterns. Notably,
in Fig. 2 (a) and (b), which shows the hyperbolic gas dynamics benchmark kernels, the RIEMANNF

kernel scales almost perfectly, which is due to its high arithmetic intensity. The fact that blocking
(an optimization that addresses cache capacity misses) showed little benefits is no surprise given this
kernel performs point-wise updates that do not demand a large cache working set. Using the Cray
compiler on Franklin, blocking results in a substantial speed improvements for 3 of the 5 kernels in
the hyperbolic gas dynamics benchmark, whereas with gcc blocking did not have any noticeable effect,
both on Carver and also on Franklin (which is not shown in the figure). In particular, the performance
of the GETADWDXF kernel increases by a factor of more than 3 with a single thread compared to the
serial reference implementation. With 4 threads the performance benefit is around a factor of 8 to
11. This might be due to the fact that gcc seems to optimize better than the Cray compiler. The
absolute execution times were better when the GNU compiler was used. The blocked kernels compiled
with Cray are roughly on par with GNU. However, Cray’s OpenMP implementation seems to be more
efficient than the one of GNU: Using GNU, the relative speedup of a single thread with OpenMP
turned on drops, in certain cases, significantly below 1, whereas the Cray compiler’s performance
stays stable when OpenMP is turned on, or, for some reason, is even increased compared to the base
version without the OpenMP pragma.

On the other hand, the parallel efficiency for the majority of the 2-dimensional ice sheet simulation
kernels is rather poor. Most of the BISICLES kernels considered do only a limited number of floating
point operations per memory reference, and the relatively few data elements per grid (as few as 256)
make it difficult to apply fine-grained thread-level parallelization; the overhead of OpenMP is too
large to be overcome by adding more concurrency. This can result in relative speedups that are < 1,
which of course is not desirable. Hence, we need to detect such cases and omit inserting the OpenMP
pragmas. The COMPUTEL1L2MU kernel, which is a point-wise kernel and does a large number of floating
point operations per grid point, again scales almost perfectly.

6

0

0.5

1

1.5

2

2.5

3

3.5

4

16³ 32³ 16³ 32³ 16³ 32³ 16³ 32³ 16³ 32³

RIEMANN GETADWDX SECONDSLOPEDIFFS VANLEERLIMITER CONSTOPRIM

Re
la

tiv
e S

pe
ed

up

Godunov Kernel Benchmark
Carver, GNU compiler

1 2 3 4 Threads +Blocking and Auto-Tuning

(a)

0

2

4

6

8

10

12

16³ 32³ 16³ 32³ 16³ 32³ 16³ 32³ 16³ 32³

RIEMANN GETADWDX SECONDSLOPEDIFFS VANLEERLIMITER CONSTOPRIM

Re
la

tiv
e S

pe
ed

up

Godunov Kernel Benchmark
Franklin, Cray compiler

1 2 3 4 Threads +Blocking and Auto-Tuning

(b)

0

1

2

3

4

5

32² 64² 96² 32² 64² 96² 32² 64² 96² 32² 64² 96² 32² 64² 96²

GETFACEGRADV ADDDIVFLUXDIRV COMPUTEL1L2MU FACEDIVINCRV ADDGRAD2FLUX

Re
la

tiv
e S

pe
ed

up

Ice Sheet Kernel Benchmark
Carver, GNU compiler

1 2 3 4 Threads +Blocking and Auto-Tuning

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

32² 64² 96² 32² 64² 96² 32² 64² 96² 32² 64² 96² 32² 64² 96²

GETFACEGRADV ADDDIVFLUXDIRV COMPUTEL1L2MU FACEDIVINCRV ADDGRAD2FLUX

Re
la

tiv
e S

pe
ed

up

Ice Sheet Kernel Benchmark
Franklin, Cray compiler

1 2 3 4 Thds +Blocking&Auto-Tuning

(d)

Figure 2: Kernel-only benchmarks of the top 5 kernels of the hyperbolic gas dynamics benchmark using
one NUMA domain on both Carver and Franklin, for (a–b) Godunov and (c–d) Ice Sheet. Performance
is shown relative to the original (unthreaded) version.

7

Total Points Total Memory (GB) Solve Time (sec)
Cores Updated Original Hybrid Original Hybrid

Franklin

512 8.0e09 221.7 166.8 177.3 361.8
1024 1.6e10 485.4 345.0 180.4 363.4
2048 3.3e10 1136.7 733.7 179.8 363.2
4096 6.7e10 2938.8 1646.3 186.4 372.0
8192 1.3e11 8534.3 3979.0 200.4 378.4

16384 2.5e11 — 10519.3 — 411.3

Carver

64 1.0e09 24.1 19.7 122.3 169.1
128 2.0e09 49.2 39.6 121.2 173.1
256 4.0e09 102.4 80.1 111.0 170.0
512 8.0e09 218.9 163.2 115.0 170.7

Table 1: Godunov application characteristics comparing total memory requirements and solve time
for original and hybrid schemes using weak scaling.

Overall, we believe hybrid implementations of Chombo must be selective in deciding whether to
apply threads to intra-grid parallelism (parallelize one grid at a time) or to apply threads for inter-
grid parallelism (each thread operates independently on a subset of the box list). The former pools
on-chip caches and overlapping working sets to maximize locality while the latter amortizes OpenMP
overhead.

5 Godunov Application Results

In this section we explore the behavior of our automated threading method when integrated with the
full Chombo application. Parallel executions of standard Chombo applications place one MPI task
per core. The experiments in Table 1 show performance comparisons of the original version versus our
hybrid MPI/OpenMP methodology, when running in weak scaling mode (increasing problem size with
respect to concurrency). Note that the individual kernel times showed similar performance behavior
both within the free standing harness and the full Chombo application.

As can be seen from Table 1, the total solve time slows down by about a factor of two using our
hybrid approach. This is because only a subset of the code has been threaded, resulting in significant
slowdowns for unthreaded code portions as less MPI processes are used. Future work will focus on
threading the remainder of the C++ computations and Fortran routines not amenable to our existing
methodology. Observe, however, that the memory footprint is dramatically reduced using our hybrid
approach. This is due to the metadata whose size is a function of the number of MPI tasks. Thus we
see more than a 2× reduction of memory requirements at 8K Franklin cores, and the ability to run
the hybrid version at 16K cores — whereas the original code fails due to memory constraints.

Another key advantage of the hybrid approach is improved load balancing for strong scaling sim-
ulation. The hybrid scheme reduces the overall number of MPI tasks, which in turn decreases the
number of Chombo box components. Since load balancing the boxes is a function of MPI task count,
the hybrid approach allows for potentially significant improvement in overall performance when strong
scaling at large concurrences.

8

6 Conclusions

In this paper we have shown that our attempt at re-purposing the existing domain-specific language
ChomboFortran to serve as input to a parallelization and auto-tuning framework gave us an effective
performance tool, from which especially loops with high arithmetic intensity benefit. It is also a
productivity tool: The portion of the gas dynamics benchmark code in which around 50% of the
compute time is spent was automatically brought into a hybrid threaded/MPI model without any
user interaction. In the kernel-only benchmarks, we measured speedups up to a factor of 11 with 4
threads. On the full application scale, using the hybrid model the memory requirements are reduced
substantially (by more than 2×), resulting in an improved code scalability over the flat MPI baseline.

The ability of kernel extraction and automated benchmarking can both engage an auto-tuner to
find optimal block sizes and provide a tool for detailed kernel-level performance studies. We carried
out validations which showed that the performance behavior of individual kernels is similar to the
performance behavior of the respective embedded in an application.

In this work, we chose to follow the initial macro expansion approach of ChomboFortran. While it is
possible to add automatic parallelization in this way and implement some basic loop transformations,
there are still serious limitations. Rigorous parallelization legality tests and more sophisticated loop
transformations, which require data dependence analysis and expression manipulation, necessitate a
more elaborate parser and building an abstract syntax tree to manipulate the code structure. This
will be addressed in future work.

There is not much more thread-level parallelism available in these fine block loops. Finer decom-
position will just create interference with processor instruction-level parallelism. Harnessing higher
concurrency architectures will require threading to operate in both the box interation loop as well as
the multido loop level. This multi-level thread parallelism will be a challenging next step.

Acknowledgments

This research used resources of the National Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

[1] Jason Ansel, Yee Lok Won, Cy Chan, et al. Language and Compiler Support for Auto-Tuning
Variable-Accuracy Algorithms. Technical Report MIT-CSAIL-TR-2010-032, MIT, Cambridge,
MA, Jul 2010.

[2] M. Berger and P. Collela. Local adaptive mesh refinement for shock hydrodynamics. J. Compu-
tational Physics, 82:64–84, May 1989.

[3] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations.
Journal of Computational Physics, 53:484–512, 1984.

[4] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, et al. SEJITS: Getting Productivity and Perfor-
manceWith Selective Embedded JIT Specialization. In First Workshop on Programmable Models
for Emerging Architecture (PMEA), 2009.

9

[5] M. Christen, O. Schenk, and H. Burkhart. Patus: A Code Generation and Autotuning Frame-
work For Parallel Iterative Stencil Computations on Modern Microarchitectures. In International
Parallel & Distributed Processing Symposium (IPDPS), 2011.

[6] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and
B. Van Straalen. Chombo software package for AMR applications: design document.
http://davis.lbl.gov/apdec/designdocuments/chombodesign.pdf.

[7] Matteo Frigo and Steven G. Johnson. The Design and Implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005.

[8] High-Performance Adaptive Algorithms for Ice-Sheet Modeling. http://crd.lbl.gov/SCG/

bisicles/.

[9] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. An Auto-tuning Frame-
work For Parallel Multicore Stencil Computations. In IEEE International Parallel & Distributed
Processing Symposium (IPDPS), April 2010.

[10] G. Miller and P. Colella. A conservative three-dimensional Eulerian method for coupled solid-fluid
shock capturing. Journal of Compuational Physics, 183:26–82, 2002.

[11] Markus Püschel, José M. F. Moura, Jeremy Johnson, et al. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on “Program Generation, Optimization, and
Adaptation”, 93(2):232– 275, 2005.

[12] Brian Van Straalen, John Shalf, Terry Ligocki, Noel Keen, and Woo-Sun Yang. Scalability
Challenges for Massively Parallel AMR Application. In IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2009.

[13] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse matrix
kernels. Journal of Physics: Conference Series, 16(1):521, 2005.

[14] R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra software. In SuperCom-
puting 1998: High Performance Networking and Computing, 1998.

[15] P. R. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with
strong shocks. Journal of Compuational Physics, 54:115–173, 1984.

10

